Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Cell Insight ; 1(3): 100029, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-2322401

RESUMO

The emergence of the SARS-CoV-2 Omicron variant poses a striking threat to human society. More than 30 mutations in the Spike protein of the Omicron variant severely compromised the protective immunity elicited by either vaccination or prior infection. The persistent viral evolutionary trajectory generates Omicron-associated lineages, such as BA.1 and BA.2. Moreover, the virus recombination upon Delta and Omicron co-infections has been reported lately, although the impact remains to be assessed. This minireview summarizes the characteristics, evolution and mutation control, and immune evasion mechanisms of SARS-CoV-2 variants, which will be helpful for the in-depth understanding of the SARS-CoV-2 variants and policy-making related to COVID-19 pandemic control.

3.
Emerg Microbes Infect ; 12(1): 2178238, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2236789

RESUMO

5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, negatively regulates type I interferon responses during various viral infections, including SARS-CoV-2. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-ß production. Knockout or knockdown of NSUN2 enhanced type I interferon and downstream ISGs during various viral infection in vitro. And in vivo, the antiviral innate response is more dramatically enhanced in Nsun2+/- mice than in Nsun2+/+ mice. The highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation enhanced cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), or Zika virus (ZIKV) resulted in a reduction of endogenous NSUN2 levels. Especially, SARS-CoV-2 infection (WT strain and BA.1 omicron variant) also decreased endogenous levels of NSUN2 in COVID-19 patients and K18-hACE2 KI mice, further increasing type I interferon and downstream ISGs. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease during SARS-CoV-2 and various viral infections to boost antiviral responses for effective elimination of viruses.


Assuntos
COVID-19 , Interferon Tipo I , Viroses , Infecção por Zika virus , Zika virus , Animais , Camundongos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Metilação , Zika virus/metabolismo , Camundongos Knockout , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Antivirais , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo
4.
Cell Discov ; 9(1): 9, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2211946

RESUMO

Advanced mRNA vaccines play vital roles against SARS-CoV-2. However, most current mRNA delivery platforms need to be stored at -20 °C or -70 °C due to their poor stability, which severely restricts their availability. Herein, we develop a lyophilization technique to prepare SARS-CoV-2 mRNA-lipid nanoparticle vaccines with long-term thermostability. The physiochemical properties and bioactivities of lyophilized vaccines showed no change at 25 °C over 6 months, and the lyophilized SARS-CoV-2 mRNA vaccines could elicit potent humoral and cellular immunity whether in mice, rabbits, or rhesus macaques. Furthermore, in the human trial, administration of lyophilized Omicron mRNA vaccine as a booster shot also engendered strong immunity without severe adverse events, where the titers of neutralizing antibodies against Omicron BA.1/BA.2/BA.4 were increased by at least 253-fold after a booster shot following two doses of the commercial inactivated vaccine, CoronaVac. This lyophilization platform overcomes the instability of mRNA vaccines without affecting their bioactivity and significantly improves their accessibility, particularly in remote regions.

5.
Sci Transl Med ; 15(677): eabo3332, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2193427

RESUMO

SARS-CoV-2 continues to accumulate mutations to evade immunity, leading to breakthrough infections after vaccination. How researchers can anticipate the evolutionary trajectory of the virus in advance in the design of next-generation vaccines requires investigation. Here, we performed a comprehensive study of 11,650,487 SARS-CoV-2 sequences, which revealed that the SARS-CoV-2 spike (S) protein evolved not randomly but into directional paths of either high infectivity plus low immune resistance or low infectivity plus high immune resistance. The viral infectivity and immune resistance of variants are generally incompatible, except for limited variants such as Beta and Kappa. The Omicron variant has the highest immune resistance but showed high infectivity in only one of the tested cell lines. To provide cross-clade immunity against variants that undergo diverse evolutionary pathways, we designed a new pan-vaccine antigen (Span). Span was designed by analyzing the homology of 2675 SARS-CoV-2 S protein sequences from the NCBI database before the Delta variant emerged. The refined Span protein harbors high-frequency residues at given positions that reflect cross-clade generality in sequence evolution. Compared with a prototype wild-type (Swt) vaccine, which, when administered to mice, induced serum with decreased neutralization activity against emerging variants, Span vaccination of mice elicited broad immunity to a wide range of variants, including those that emerged after our design. Moreover, vaccinating mice with a heterologous Span booster conferred complete protection against lethal infection with the Omicron variant. Our results highlight the importance and feasibility of a universal vaccine to fight against SARS-CoV-2 antigenic drift.


Assuntos
COVID-19 , Animais , Camundongos , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
6.
Nature ; 612(7941): 748-757, 2022 12.
Artigo em Inglês | MEDLINE | ID: covidwho-2151056

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.


Assuntos
Enzima de Conversão de Angiotensina 2 , Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Receptores Virais , Internalização do Vírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virologia , Microscopia Crioeletrônica , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Zoonoses Virais
7.
Cell Insight ; 1(4): 100043, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1885672

RESUMO

As of 10 May 2022, at least 450 cases of pediatric patients with acute hepatitis of unknown cause have been reported worldwide. Human adenoviruses (HAdVs) have been detected in at least 74 cases, including the F type HAdV41 in 18 cases, which indicates that adenoviruses may be associated with this mysterious childhood hepatitis, although other infectious agents or environmental factors cannot be excluded. In this review, we provide a brief introduction of the basic features of HAdVs and describe diseases caused by different HAdVs in humans, aiming to help understand the biology and potential risk of HAdVs and cope with the outbreak of acute child hepatitis.

8.
Viruses ; 14(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1869809

RESUMO

A new antibody diagnostic assay with more rapid and robust properties is demanded to quantitatively evaluate anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in a large population. Here, we developed a nanometer-scale fluorescent biosensor system consisting of CdSe-ZnS quantum dots (QDs) coupled with the highly sensitive B-cell epitopes of SARS-CoV-2 that could remarkably identify the corresponding antibody with a detection limit of 100 pM. Intriguingly, we found that fluorescence quenching of QDs was stimulated more obviously when coupled with peptides than the corresponding proteins, indicating that the energy transfer between QDs and peptides was more effective. Compared to the traditional enzyme-linked immunosorbent assay (ELISA), the B-cell-epitope-based QD-biosensor could robustly distinguish coronavirus disease 2019 (COVID-19) antibody-positive patients from uninfected individuals with a higher sensitivity (92.3-98.1% positive rates by QD-biosensor vs. 78.3-83.1% positive rates by ELISAs in 207 COVID-19 patients' sera) in a more rapid (5 min) and labor-saving manner. Taken together, the 'QD-peptides' biosensor provided a novel real-time, quantitative, and high-throughput method for clinical diagnosis and home-use tests.


Assuntos
Técnicas Biossensoriais , COVID-19 , Pontos Quânticos , Anticorpos , COVID-19/diagnóstico , Epitopos de Linfócito B , Humanos , Peptídeos , SARS-CoV-2
9.
Signal Transduct Target Ther ; 7(1): 137, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1805598

RESUMO

Whether and how innate antiviral response is regulated by humoral metabolism remains enigmatic. We show that viral infection induces progesterone via the hypothalamic-pituitary-adrenal axis in mice. Progesterone induces downstream antiviral genes and promotes innate antiviral response in cells and mice, whereas knockout of the progesterone receptor PGR has opposite effects. Mechanistically, stimulation of PGR by progesterone activates the tyrosine kinase SRC, which phosphorylates the transcriptional factor IRF3 at Y107, leading to its activation and induction of antiviral genes. SARS-CoV-2-infected patients have increased progesterone levels, and which are co-related with decreased severity of COVID-19. Our findings reveal how progesterone modulates host innate antiviral response, and point to progesterone as a potential immunomodulatory reagent for infectious and inflammatory diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/genética , Humanos , Sistema Hipotálamo-Hipofisário , Imunidade Inata/genética , Camundongos , Sistema Hipófise-Suprarrenal , Progesterona/farmacologia
11.
Emerg Microbes Infect ; 11(1): 567-572, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1642256

RESUMO

Global concern has been raised by the emergence and rapid transmission of the heavily mutated SARS-CoV-2 Omicron variant (B.1.1.529). So far, the infection features and immune escape ability of the Omicron variant have not been extensively studied. Here, we produced the Omicron pseudovirus and compared its entry, membrane fusion, and immune escape efficiency with the original strain and the dominating Delta variant. We found the Omicron variant showed slightly higher infectivity than the Delta variant and a similar ability to compete with the Delta variant in using Angiotensin-converting enzyme 2 (ACE2) in a BHK21-ACE2 cell line. However, the Omicron showed a significantly reduced fusogenicity than the original strain and the Delta variant in both BHK21-ACE2 and Vero-E6 cells. The neutralization assay testing the Wuhan convalescents' sera one-year post-infection showed a more dramatic reduction (10.15 fold) of neutralization against the Omicron variant than the Delta variant (1.79 fold) compared with the original strain with D614G. Notably, immune-boosting through three vaccine shots significantly improved the convalescents' immunity against the Omicron variants. Our results reveal a reduced fusogenicity and a striking immune escape ability of the Omicron variant, highlighting the importance of booster shots against the challenge of the SARS-CoV-2 antigenic drift.


Assuntos
Deriva e Deslocamento Antigênicos , COVID-19 , SARS-CoV-2/imunologia , Animais , COVID-19/imunologia , Chlorocebus aethiops , Humanos , Evasão da Resposta Imune , Imunização Secundária , Células Vero
12.
Innovation (Camb) ; 3(1): 100181, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1595417

RESUMO

Most COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, but it remains unclear how long it can maintain and how efficiently it can prevent the reinfection of the emerging SARS-CoV-2 variants. Here, we tested the sera from 248 COVID-19 convalescents around 1 year post-infection in Wuhan, the earliest known epicenter. SARS-CoV-2 immunoglobulin G (IgG) was well maintained in most patients and potently neutralizes the infection of the original strain and the B.1.1.7 variant. However, varying degrees of immune escape was observed on the other tested variants in a patient-specific manner, with individuals showing remarkably broad neutralization potency. The immune escape can be largely attributed to several critical spike mutations. These results suggest that SARS-CoV-2 can elicit long-lasting immunity but this is escaped by the emerging variants.

14.
PLoS Pathog ; 17(9): e1009947, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1470670

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) preferentially infects and causes Kaposi's sarcoma (KS) in male patients. However, the biological mechanisms are largely unknown. This study was novel in confirming the extensive nuclear distribution of the androgen receptor (AR) and its co-localization with viral oncoprotein of latency-associated nuclear antigen in KS lesions, indicating a transcription way of AR in KS pathogenesis. The endogenous AR was also remarkably higher in KSHV-positive B cells than in KSHV-negative cells and responded to the ligand treatment of 5α-dihydrotestosterone (DHT), the agonist of AR. Then, the anti-AR antibody-based chromatin immunoprecipitation (ChIP)-associated sequencing was used to identify the target viral genes of AR, revealing that the AR bound to multiple regions of lytic genes in the KSHV genome. The highest peak was enriched in the core promoter sequence of polyadenylated nuclear RNA (PAN), and the physical interaction was verified by ChIP-polymerase chain reaction (PCR) and the electrophoretic mobility shift assay (EMSA). Consistently, male steroid treatment significantly transactivated the promoter activity of PAN in luciferase reporter assay, consequently leading to extensive lytic gene expression and KSHV production as determined by real-time quantitative PCR, and the deletion of nuclear localization signals of AR resulted in the loss of nuclear transport and transcriptional activity in the presence of androgen and thus impaired the expression of PAN RNA. Oncogenically, this study identified that the AR was a functional prerequisite for cell invasion, especially under the context of KSHV reactivation, through hijacking the PAN as a critical effector. Taken together, a novel mechanism from male sex steroids to viral noncoding RNA was identified, which might provide a clue to understanding the male propensity in KS.


Assuntos
RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Receptores Androgênicos/metabolismo , Sarcoma de Kaposi/metabolismo , Caracteres Sexuais , Carcinogênese/metabolismo , Feminino , Herpesvirus Humano 8 , Humanos , Masculino , RNA não Traduzido/metabolismo
15.
Emerg Microbes Infect ; 10(1): 1626-1637, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1348038

RESUMO

Coronaviruses (CoVs) can infect a variety of hosts, including humans, livestock and companion animals, and pose a serious threat to human health and the economy. The current COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed millions of people. Unfortunately, effective treatments for CoVs infection are still lacking, suggesting the importance of coronavirus vaccines. Our previous work showed that CoV nonstuctural protein 14 (nsp14) functions as (guanine-N7)-methyltransferase (N7-MTase), which is involved in RNA cap formation. Moreover, we found that N7-MTase is well conserved among different CoVs and is a universal target for developing antivirals against CoVs. Here, we show that N7-MTase of CoVs can be an ideal target for designing live attenuated vaccines. Using murine hepatitis virus strain A59 (MHV-A59), a representative and well-studied model of coronaviruses, we constructed N7-MTase-deficient recombinant MHV D330A and Y414A. These two mutants are highly attenuated in mice and exhibit similar replication efficiency to the wild-type (WT) virus in the cell culture. Furthermore, a single dose immunization of D330A or Y414A can induce long-term humoral immune responses and robust CD4+ and CD8+ T cell responses, which can provide full protection against the challenge of a lethal-dose of MHV-A59. Collectively, this study provides an ideal strategy to design live attenuated vaccines for coronavirus by abolishing viral RNA N7-MTase activity. This approach may apply to other RNA viruses that encode their own conservative viral N7-methyltransferase.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Atenuadas/imunologia , Animais , Vacinas contra COVID-19/administração & dosagem , Citocinas/biossíntese , Humanos , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , Interferon Tipo I/biossíntese , Masculino , Camundongos , Mutação , Vacinas Atenuadas/administração & dosagem , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
16.
Cell Prolif ; 54(9): e13091, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1320384

RESUMO

OBJECTIVES: Recent studies have shown the presence of SARS-CoV-2 in the tissues of clinically recovered patients and persistent immune symptoms in discharged patients for up to several months. Pregnant patients were shown to be a high-risk group for COVID-19. Based on these findings, we assessed SARS-CoV-2 nucleic acid and protein retention in the placentas of pregnant women who had fully recovered from COVID-19 and cytokine fluctuations in maternal and foetal tissues. MATERIALS AND METHODS: Remnant SARS-CoV-2 in the term placenta was detected using nucleic acid amplification and immunohistochemical staining of the SARS-CoV-2 protein. The infiltration of CD14+ macrophages into the placental villi was detected by immunostaining. The cytokines in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens at delivery were profiled using the Luminex assay. RESULTS: Residual SARS-CoV-2 nucleic acid and protein were detected in the term placentas of recovered pregnant women. The infiltration of CD14+ macrophages into the placental villi of the recovered pregnant women was higher than that in the controls. Furthermore, the cytokine levels in the placenta, maternal plasma, neonatal umbilical cord, cord blood and amniotic fluid specimens fluctuated significantly. CONCLUSIONS: Our study showed that SARS-CoV-2 nucleic acid (in one patient) and protein (in five patients) were present in the placentas of clinically recovered pregnant patients for more than 3 months after diagnosis. The immune responses induced by the virus may lead to prolonged and persistent symptoms in the maternal plasma, placenta, umbilical cord, cord blood and amniotic fluid.


Assuntos
Citocinas/análise , Placenta/virologia , RNA Viral/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Proteínas Virais/isolamento & purificação , Adulto , Líquido Amniótico/química , COVID-19/patologia , Feminino , Sangue Fetal/química , Humanos , Recém-Nascido , Macrófagos/imunologia , Técnicas de Amplificação de Ácido Nucleico , Placenta/imunologia , Gravidez , RNA Viral/sangue , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , Proteínas Virais/sangue
17.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1117323

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Assuntos
COVID-19 , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
18.
Nat Ecol Evol ; 5(5): 600-608, 2021 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1111986

RESUMO

Bats are the suggested natural hosts for severe acute respiratory syndrome coronavirus (SARS-CoV) and the causal agent of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2. The interaction of viral spike proteins with their host receptor angiotensin-converting enzyme 2 (ACE2) is a critical determinant of potential hosts and cross-species transmission. Here we use virus-host receptor binding and infection assays to examine 46 ACE2 orthologues from phylogenetically diverse bat species, including those in close and distant contact with humans. We found that 24, 21 and 16 of them failed to support infection by SARS-CoV, SARS-CoV-2 or both viruses, respectively. Furthermore, we confirmed that infection assays in human cells were consistent with those in two bat cell lines. Additionally, we used genetic and functional analyses to identify critical residues in bat ACE2 receptors associated with viral entry restrictions. Our results suggest that many bat species may not be the potential hosts of one or both viruses and that no correlation was identified between proximity to humans and probability of being natural hosts of SARS-CoV or SARS-CoV-2. This study demonstrates dramatic variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species and adds knowledge towards a better understanding of coronavirus-bat interaction.


Assuntos
COVID-19 , Quirópteros , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Peptidil Dipeptidase A/genética , Receptores Virais/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
19.
Cell Res ; 31(4): 395-403, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1091494

RESUMO

The upcoming flu season in the Northern Hemisphere merging with the current COVID-19 pandemic raises a potentially severe threat to public health. Through experimental coinfection with influenza A virus (IAV) and either pseudotyped or live SARS-CoV-2 virus, we found that IAV preinfection significantly promoted the infectivity of SARS-CoV-2 in a broad range of cell types. Remarkably, in vivo, increased SARS-CoV-2 viral load and more severe lung damage were observed in mice coinfected with IAV. Moreover, such enhancement of SARS-CoV-2 infectivity was not observed with several other respiratory viruses, likely due to a unique feature of IAV to elevate ACE2 expression. This study illustrates that IAV has a unique ability to aggravate SARS-CoV-2 infection, and thus, prevention of IAV infection is of great significance during the COVID-19 pandemic.


Assuntos
COVID-19/patologia , Coinfecção/patologia , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/patologia , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/deficiência , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/virologia , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular , Coinfecção/virologia , Humanos , Vírus da Influenza A/isolamento & purificação , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/virologia , RNA Guia de Cinetoplastídeos/metabolismo , SARS-CoV-2/isolamento & purificação , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Índice de Gravidade de Doença , Carga Viral , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA